Introduction to C++
COMP101- Part 2

Print

Largest is rulg N?Jrrigﬂe‘l

Dr. Zaild Ameen



Arithmetic Expression

Arithmetic expressions in C++ must be entered into the computer in straight-line
form. Thus, expressions such as “a divided by b’ must be written as a / b, so that all
constants, variables and operators appear In a straight line. Parentheses are used In
C++ expressions In the same manner as in algebraic expressions. For example, to
multiply a times the quantity b + c we writea* (b + ¢ ).

The main statement in C++ for carrying out computation and assigning values
to variables iIs the assignment statement. For example the following assignment
statement:

average = (a + b)/2;

The general form of an assignment statement is:

result = expression ;



C++ applies the operators in arithmetic expressions in a precise order determined by
these rules of operator precedence, which are generally the same as those in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Parentheses are said to be at the “highest level of precedence.” In cases of nested, or
embedded, parentheses, such as the operators in the innermost pair of parentheses are
applied first.

2. Multiplication, division and modulus operations are applied next. If an expression
contains several multiplication, division and modulus operations, operators are applied
from left to right. Multiplication, division and modulus are said to be on the same level
of precedence.

3. Addition and subtraction operations are applied last. If an expression contains several
addition and subtraction operations, operators are applied from left to right. Addition
and subtraction also have the same level of precedence.

The set of rules of operator precedence defines the order in which C++ applies
operators. When we say that certain operators are applied from left to right, we are
referring to the associatively of the operators. For example, the addition operators (+) In
the expression associate from left to right, so a + b is calculated first, then c is added to
that sum to determine the whole expression’s value. We’ll see that some operators
associate from right to left. Figure 1.2 summarizes these rules of operator precedence.
We expand this table as we introduce additional C++ operators.



Operator(s) | Operation(s) | Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the expression in the
innermost pair 1s evaluated first. [Caution: If you have an expression such
as (a + b) * (¢ - d) in which two sets of parentheses are not nested, but
appear “on the same level,” the C++ Standard does not specify the order in
which these parenthesized sub expressions will be evaluated. ]

*.1,% Multiplication, | Evaluated second. If there are several, they’re evaluated left
Division, to right.
Modulus
+, - Addition, Evaluated last. If there are several, they’re evaluated left to
Subtraction right.
++/-- Increment The increment operator increases the value of i1ts operand by 1. The
/decrement operand must have an arithmetic or pointer data type, and must refer to a
operators modifiable data object. Similarly, the decrement operator decreases the

value of its modifiable arithmetic operand by 1. Pointers values are
increased (or decreased) by an amount that makes them point to the next

(or previous) element adjacent in memory.




-
Algebra: y=mx+b

Algebra: z=pr%q + wix—y

C+4: Z:p*r%q+w/x-y;

Suppose variables a, b, ¢ and x in the preceding second-degree polynomial are initialized as follows:

a=2,b=3,c=7and x =35. Figure 1.3 illustrates the order in which the operators are applied and the
final value of the expression. As in algebra, it’s acceptable to place unnecessary parentheses in an
expression to make the expression clearer. These are called redundant parentheses. For example, the

preceding assignment statement could be parenthesized as follows:



Step 1. Your 2 %8:% S 3 ¥ Fag s (Leftmost multiplication)
2 * 5 is|&8
Step 2. Vo 10® 85 & 3™ § T (Leftmost multiplication)
10 = A4S 5'_.0'
Y
Step 3. y =504+ 3 %5 4+ 7; (Multiplication before addition)
3 * 59s 15'
\
Step 4. y =504+ 15 % 7; (Leftmost addition)
50 + 15 is 65'
\
Step 5. y = 65 4+ 7; (Last addition)

65 &7 15.72|




There are many mathematics functions in C++ programming language. So, header <math.h>
declares a set of functions to compute common mathematical operations and transformations:

Function | Prototype Purpose

abs(x) int abs(int x); returns the absolute value of an integer.

fabs(x) double fabs(double x); returns the absolute value of a floating point number

ce1l(x) double ceil(double x); rounds up to a whole number cout << ceil(11.2); (prints 12)

(not normal rounding)

floor(x) double floor(double x); | rounds down to a whole number cout<<floor(11.5); (prints 11)

(not normal rounding)

pow (X,y) | double pow (double x, | calculates x to the power of y. If x 1s negative, y must be an

double v); mteger. If X 1s zero, y must be a positive integer.
pow10(x) | double pow10 (int x); calculates 10 to the power of x.
sqrt (X) double sqrt(double x); calculates the positive square root of x. (x 1s >=0)

fmod(x,y) | double fmod(double x, | returns floating point remainder of x/y with same sign as X. Y
double y); cannot be zero. Because the modulus operator(%) works only with
integers, this function 1s used to find the remainder of floating

point number division.




COS(X)

cosine of X

sin(X) sine of X

tan(x) tangent of x

acos(X) arc cosine X

asin(x) arc sine of X

atan(x) arc tangent X

cosh(x) | hyperbolic cosine of x
sinh(x) | hyperbolic sine of x
tanh(x) | hyperbolic tangent of x
exp(x) exponential function
log(x) natural logarithm
loglO(x) | base 10 logarithm
s1n(X) sine of X

tan(x) tangent of x




Logical Expression

\ery often, you need to compare two values before deciding on the action to be
taken, e.g., If mark is more than or equal to 50, print "PASS". C++ provides six

comparison operators (or relational operators):

equal to

Operator |Description Usage Example (x=5, y=8)
== Equal to exprl == expr2 (x ==y) — false
= Not Equal to exprl !=expr2 (x I=y) — true
> Greater than exprl > expr2 (x >y) — false
>= Greater than on exprl >=expr2 (x >=5) — true
equal to
< Less than exprl < expr2 (y < 8) — false
<= Less than orn exprl>=expr2 (y <=8) — true




Logical Expression

In C++, these comparison operations returns a bool value of either false (0) or
true (1 or a non-zero value). Each comparison operation involves two operands,
e.g., X <= 100. It is invalid to write 1 < x < 100 In programming. Instead, you
need to break out the two comparison operations X > 1, X < 100, and join with
with a logical AND operator, i.e., (X > 1) && (X < 100), where && denotes
AND operator. C++ provides four logical operators (which operate on boolean

operands only):
Operator | Description Usage

&& | Logical AND | exprl && expr2

I Logical OR exprl || expr2

! Logical NOT | lexpr

" Logical XOR | exprl " expr2




The truth tables are as follows:

And (&&) | True True True
True False False
False True False
False False False

Or (| True True True
True False True
False True True
False False False

Not (!) True False
False True

Xor () True True False
True False True
False True True
False False False




Example

//;/ Return true 1f x 1s between 0 and 100 (inclusive) \\\
(x >=0) && (x <= 100)
// wrong to use 0 <= x <= 100

// Return true if x is outside 0 and 100 (inclusive)
(x < 0) || (x > 100) Jor

12



Input and Output statements

C++ defines an input stream that retrieves data from the keyboard as a
consecutive series of characters. The class or blueprint is called an istream and the
specific instance that we use to obtain keyboard input is called cin. This definition of cin,
as an Instance of the istream, is parallel to our use of cost as an instance of the iIntrinsic
double data type. It is the same with cout being an instance of the ostream class of data. The
Istream class and the definition of cin are contained in the header file iostream.h. The
operator that causes transfer of data from the keyboard into our variable is called the
extraction operator which is >>. The extraction operator can be thought of as extracting the
next data item from the input stream of characters as they are entered on the keyboard. The
extraction operator’s syntax is similar to the insertion operator that is used to send data to the

Screen.

cin >> variable;



Assume that we have defined both gty and cost as an integer and a double as above. If we
code cin >> qty; then the input stream waits until the user has entered their data and pressed the
enter key. Just as the insertion operator can be chained with other insertion operators to output
more than one item at a time, so can the extraction operator. For example, one can code: cin >>

qty >> cost;

When inputting data from the keyboard, a program must always prompt the user notifying
them what data is to be entered at this point. A prompt is nothing more than a simple cout line.
For example, one could code:

cout << "Enter the quantity: ';
cin >> qty;
cout << "Enter the cost: *;

cin >> cost;



Notes

» endl:This function is used to print new line.

* The setw() or set width function can be used to set the total width
for the next item being displayed. It applies solely and only to the
next item to be displayed. The function takes one parameter, the
total width of the next item. For numeric types, the values are right
justified within the total specified width. A more optimum way to

display the line is as follows.

cout << setw (4) << gty << setw (6) << cost << setw (7) << total
<< endl;

This is In fact exactly what was used in the above proper columnar
alignment example.



Program

#include <iostream.h-

int Integer:;

char aCharacter;

char string [20];
unsigned int Humber0fSons;

main ()

{

unsigned short Age;
float AHumber , AnotherOne ;

cout << "Enter your age:"
cin == Auje;

(;lohal variab les

Local variahles

Instructions



Global variables can be referred to anywhere in the code, within any
function, whenever it is after its declaration.

The scope of the local variables is limited to the code level in which they
are declared. If they are declared at the beginning of a function (like In
main) their scope Is the whole main function. In the example above, this
means that if another function existed in addition to main (), the local
variables declared in main could not be used in the other function and vice
versa.

In C++, the scope of a local variable is given by the block in which it Is
declared (a block is a group of instructions grouped together within curly
brackets {} signs). If it is declared within a function it will be a variable with

function scope, If it is declared in a loop its scope will be only the loop, etc...



Examples:-

Write C++ program to print welcome message “Hello Word™?

#include <iostream>

int main ()

cout << "Hello World!"™;

return 0;

}

#include <iostream.h>

int main ()

cout << "Hello World! ";
cout << "I'm a C++ program";

return 0;




Examples:-

Write C++ Program to output an integer, a floating point number and a character?

#include <iostream.h>

#include <conio.h>

void main ()

clrscr(),; int x = 10;

float y = 10.1,; char z =

!a';

cout << "x =" << x << endl;
cout << "y = " <K< y << endl;
cout << "z =" K< z << endl;

}getch();



Examples:-

Write C++ program to enter two integers and find their sum and average?

#include <iostream.h>
#include <conio.h>

void main ()

clrscr(),; int x 10; int y = 2;
int sum, difference, product, quotient;,
sum = x + y,; difference = x - y;
product = x * y; quotient = x / y;
cout << "The sum of " <K x << " & " <Ky << " is " << sum << "." << endl;
cout << "The difference of " <K x << " & " << "y << is " << difference
<< "." << endl;
cout << "The product of " <K x << " & " <K y << " is " << product << "."

<< endl;,
ggut éf "The quotient of " <K x << " & " <K y << " is " << quotient << "."
endl,

getch (),



Examples:-

Write C++ program to enter two integers and find their sum and average?

#include <iostream.h>
#include <iostream.h>

#include <conio.h>

void main /()

clrscr (),

int x,y,sum;

float average,

cout << "Enter 2 integers : " << endl;

cin>>x>>y; sum=x+y;

average=sum/2;

cout << "The sum of " << x << " gnd " << y << " is " << sum <<

"." << endI;
cout << "The average of " << x << "and " << y << " 1is " <K<
average << "." << endl;,

?etch();



Examples:-

Write Program to enter an integer and output the cube of that integer?

#include <iostream.h>
#1include <conio.h>

void main ()

{

clrscr (), int a;,

cout << "Enter an integer : ";

cin>>a;

b=a*a*ay;,

cout << "The cube of " << g << " 1is : " << b <<

endl, getch();



Examples:-

Write C++ program to convert Converts gallons to liters
#include <iostream.h>
using namespace std;

int main/{()
float gallons, liters;,

cout << "Enter number of gallons: ";

cin >> gallons; // Read the inputs from the
user liters = gallons * 3.7854; // convert to

liters cout << "Liters: " << liters << endl;

return 0;



Examples:-

Write c++ program to find area of circle find area

of circle?

#include <iostream.h>
int main/{()

float Rad, Area;

cout << "Enter Radius of circle: ";
cin >> Rad; // Read the inputs from the user

Area = 0.5*% rad*rad*3.14;,
cout << "Area: " << Area << endl;

return 0;



Examples:-

Write c++ program to find area of circle find area

of circle?

#include <iostream.h>
int main/{()

float Rad, Area;

cout << "Enter Radius of circle: ";
cin >> Rad; // Read the inputs from the user

Area = 0.5*% rad*rad*3.14;,
cout << "Area: " << Area << endl;

return 0;



Examples:-

Write Program to enter your age and print if you should be in grade 10?

#include <iostream.h>
#1include <conio.h>

void main ()

{
clrscr();
int age;
cout << "Enter your present age : " << endl;
cin>>age;
1f (age==16)
{
cout << "Your present age is " << age << " years." << endl;
cout << "You are of the right age for joining grade 10 !" << endl;
/
else
{
cout << "Your present age 1s " << age << " years." << endl;
cout << "You are not of the right age for joining grade 10 !" << endl;
/
getch() ;

/



Exercises:

Write C++ program to convert days into years and weeks?

Write C++ program to convert temperatures from Celsius to

Fahrenheit and Vice Versa. Ftemp=(1.8*Ctemp)+32.

Write C++ program to compute area of rectangle?

Write C++ program to enter two values of the integer type and then
swap one replace the other (ex. X=3; Y=4 = X=4,; Y=3)?



